Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress
نویسندگان
چکیده
High power lasers are used extensively in medicine while lower power applications are popular for optical imaging, optogenetics, skin rejuvenation and a therapeutic modality termed photobiomodulation (PBM). This study addresses the therapeutic dose limits, biological safety and molecular pathway of near-infrared (NIR) laser phototoxicity. Increased erythema and tissue damage were noted in mice skin and cytotoxicity in cell cultures at phototoxic laser doses involving generation of reactive oxygen species (ROS) coupled with a rise in surface temperature (>45 °C). NIR laser phototoxicity results from Activating Transcription Factor-4 (ATF-4) mediated endoplasmic reticulum stress and autophagy. Neutralizations of heat or ROS and overexpressing ATF-4 were noted to rescue NIR laser phototoxicity. Further, NIR laser mediated phototoxicity was noted to be non-genotoxic and non-mutagenic. This study outlines the mechanism of NIR laser phototoxicity and the utility of monitoring surface temperature and ATF4 expression as potential biomarkers to develop safe and effective clinical applications.
منابع مشابه
Dosimetry for photobiomodulation therapy: response to Sommers et al.
In a recent article by Sommer et al. in Annals of Translational Medicine, the authors make several key comments on our recent article in Scientific Reports entitled “Molecular pathway of near infrared laser phototoxicity involves ATF4 orchestrated ER stress” (1). Firstly, we would like to thank the authors for their laudatory, constructive comments, specifically appreciating the rigorous effort...
متن کامل4-phenylbutyric Acid Regulates Collagen Synthesis and Secretion Induced by High Concentrations of Glucose in Human Gingival Fibroblasts
High glucose leads to physio/pathological alterations in diabetes patients. We investigated collagen production in human gingival cells that were cultured in high concentrations of glucose. Collagen synthesis and secretion were increased when the cells were exposed to high concentrations of glucose. We examined endoplasmic reticulum (ER) stress response because glucose metabolism is related to ...
متن کاملThe Effect of Resistance Training and Berberine Chloride on the Apoptosis-Related Unfolded Protein Response Signaling Pathway in the Hippocampus of Diazinon-Poisoned Rats
Introduction: Diazinon is one of the most widely-used organophosphate pesticides in the world. This toxin enters the body in various ways and induces oxidative stress in various tissues. It has been proved that activation of unfolded protein response (UPR) under oxidative stress is a steady mechanism for maintaining cell function and survival. Therefore, the present study aimed to review the ef...
متن کاملExendin-4 protects bone marrow-derived mesenchymal stem cells against oxygen/glucose and serum deprivation-induced apoptosis through the activation of the cAMP/PKA signaling pathway and the attenuation of ER stress
Exendin-4 (ex-4) is a long-acting glucagon-like peptide-1 receptor (GLP-1R) agonist which exerts beneficial effects on glycemic control and promotes cell viability. In the present study, we investigated the anti-apoptotic effects of ex-4, as well as the potential mechanisms responsible for these effects in rat bone marrow-derived mesenchymal stem cells (BM-MSCs) under conditions of oxygen, gluc...
متن کاملGLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress.
Perturbation of endoplasmic reticulum (ER) homeostasis impairs insulin biosynthesis, beta cell survival, and glucose homeostasis. We show that a murine model of diabetes is associated with the development of ER stress in beta cells and that treatment with the GLP-1R agonist exendin-4 significantly reduced biochemical markers of islet ER stress in vivo. Exendin-4 attenuated translational downreg...
متن کامل